
Problem Set Solutions (Based on Provided Document)

Problem 14.1

(a) How many watts of power are contained in the light from a 1000 lumen video projector?
Solution: The document states that an ideal source of white light over the visible range would produce

about 200 lumens (lm) per watt (W) of power[cite: 32]. However, typical incandescent sources are much
lower (10-20 lm/W [cite: 33]), and efficient lamps like sodium vapor approach 200 lm/W[cite: 35]. Video
projectors use various lamp technologies, often less efficient than the ideal 200 lm/W due to filtering for
color, etc. Assuming a relatively efficient projector might operate at, say, half the ideal efficiency for
white light as a rough estimate:

Efficiency ≈ 100 lm/W

Then, the power P for a L = 1000 lm projector is:

P =
L

Efficiency
=

1000 lm

100 lm/W
= 10W

This is an estimate; the actual power depends heavily on the specific projector technology and efficiency.
Using the ideal efficiency yields P = 1000/200 = 5 W[cite: 32]. A typical 75W bulb produces 1200 lm,
giving 16 lm/W[cite: 33]; using this efficiency gives P = 1000/16 ≈ 62.5 W. The value varies greatly.
Let’s use the ideal source value as a lower bound.

Answer: Using the ideal efficiency value provided in the text[cite: 32], the power is 1000 lm/200 lm/W =
5W. Using efficiencies of real sources suggests it could be significantly higher (e.g., 10-60 W)[cite: 33,
34, 35].

(b) What spatial resolution is needed for the printing of a page in a book to match the
eye’s limit?

Solution: The document states that the eye can resolve a spatial frequency of 60 cycles per degree[cite:
81]. To convert this to a resolution like dots per inch (dpi), we need a viewing distance. Assume a
standard reading distance, d = 30 cm (approx 1 foot).

One degree at distance d subtends a length s = d tan(1◦).

s = (30 cm) tan(1◦) ≈ (30 cm)× (0.01745) ≈ 0.524 cm

The eye resolves 60 cycles in this angle/length. One cycle corresponds to a pair of lines (e.g., black and
white), so it contains 2 ”dots” or features. The minimum resolvable feature size ∆x corresponds to half
a cycle length at the limit.

Length per cycle =
s

60
=

0.524 cm

60
≈ 0.00873 cm

Minimum feature size ∆x =
1

2
× (Length per cycle) ≈ 0.00436 cm

Resolution in dots per cm (dpcm) is 1/∆x.

Resolution (dpcm) =
1

0.00436 cm
≈ 229 dpcm

Converting to dots per inch (dpi), knowing 1 inch = 2.54 cm:

Resolution (dpi) = 229 dpcm× 2.54
cm

inch
≈ 582 dpi

Answer: A spatial resolution of approximately 600 dpi is needed to match the eye’s limit at a typical
reading distance.

Problem 14.2

(a) What is the peak wavelength for black-body radiation from a person? From the cosmic
background radiation at 2.74 K?

Solution: The peak wavelength λpeak of black-body radiation is given by Wien’s Displacement Law:

λpeak =
b

T
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where b ≈ 2.898 × 10−3 m · K is Wien’s displacement constant, and T is the absolute temperature in
Kelvin. While the document provides Planck’s Law (Eq. 13.5)[cite: 7], it doesn’t explicitly state Wien’s
Law, which is derived from it.

Person: Assume a normal body temperature Tperson = 37◦C = (37 + 273.15)K ≈ 310K.

λpeak, person =
2.898× 10−3 m ·K

310K
≈ 9.35× 10−6 m = 9.35µm

This falls in the infrared region.
Cosmic Background Radiation (CMB): The temperature is given as TCMB = 2.74K[cite: 324].

λpeak, CMB =
2.898× 10−3 m ·K

2.74K
≈ 1.058× 10−3 m = 1.058mm

This falls in the microwave region.
Answer: Peak wavelength for a person is ≈ 9.35µm (infrared). Peak wavelength for CMB at 2.74 K

is ≈ 1.06mm (microwave).
(b) Approximately how hot is a material if it is “red-hot”?
Solution: ”Red-hot” implies the material is emitting enough thermal radiation in the red part of the

visible spectrum (λ ≈ 650− 750 nm) to be perceived as red. Using Wien’s Law (λpeak = b/T ) again, we
can estimate the temperature where the peak emission is red.

T =
b

λpeak
=

2.898× 10−3 m ·K
700× 10−9 m

≈ 4140K

However, an object appears red even when the peak is in the infrared, as long as the tail of the Planck
distribution (Eq. 13.5[cite: 7], Figure 13.1 [cite: 8]) extends significantly into the visible red. Objects
typically start glowing visibly red around 500-600 ◦C (approx 800-900 K). At these temperatures, the
peak is still deep in the infrared (∼ 3− 4µm), but there’s enough emission at the red end of the visible
spectrum.

Answer: A material typically starts glowing visibly red around 800-900 K (approx 500-600 ◦C). The
peak emission at this point is still in the infrared.

(c) Estimate the total power thermally radiated by a person.
Solution: The total power per area R radiated by a black body is given by the Stefan-Boltzmann

Law (Eq. 13.7)[cite: 13]:
R = σT 4

where σ = 5.67 × 10−8 W/(m2 · K4) is the Stefan-Boltzmann constant and T is the absolute tempera-
ture[cite: 13]. For real surfaces, this is corrected by emissivity ϵ (R = ϵσT 4), where ϵ = 1 for an ideal
black body[cite: 14]. Human skin has high emissivity in the infrared, ϵ ≈ 0.95− 0.98.

Assume body temperature T = 310K (from part a), surface area A ≈ 1.7m2, and emissivity ϵ ≈ 0.95.
The total power radiated Prad is:

Prad = ϵσAT 4

Prad ≈ (0.95)(5.67× 10−8 W/(m2 ·K4))(1.7m2)(310K)4

Prad ≈ (0.95)(5.67× 10−8)(1.7)(9.235× 109)W ≈ 846W

This is the power radiated. The net power loss also depends on the power absorbed from the surround-
ings. If the surrounding temperature is Tsurr, the power absorbed is Pabs = ϵσAT 4

surr. Assuming room
temperature Tsurr = 20◦C = 293K:

Pabs ≈ (0.95)(5.67× 10−8)(1.7)(293K)4 ≈ 675W

The net radiative power loss is Pnet = Prad − Pabs ≈ 846− 675 = 171W.
Answer: The total power thermally radiated by a person at 310 K is approximately 850 W. The net

radiative power loss in a 20 ◦C environment is roughly 170 W.
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Problem 14.3

We use the Jones calculus formalism described on pages 13-14[cite: 169]. Let the input light be linearly

polarized along the x-axis: E⃗in =

(
1
0

)
. The birefringent material has its optical axes rotated by an angle

θ relative to the lab (x,y) axes. The transformation is E⃗out = R(−θ)B(d)R(θ)E⃗in[cite: 178], where R(θ)
is the rotation matrix [cite: 174] and B(d) is the birefringence matrix[cite: 177], ignoring the overall
phase e−iσ:

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
, B(d) =

(
e−iδ 0
0 eiδ

)
The phase difference term is δ = (nslow − nfast)

ωd
2c = (ns − nf )

πd
λ [cite: 176, 177]. For calcite, ns = 1.658

and nf = 1.486[cite: 167], so ∆n = ns−nf = 0.172. The wavelength is λ ≈ 600 nm = 600× 10−9 m[cite:
328].

(a) Find a thickness and an orientation for a birefringent material that rotates a linearly
polarized wave by 90◦. What is that thickness for calcite with visible light (λ ∼ 600 nm)?

Solution: To rotate linear polarization by 90◦ (e.g., from x-polarized to y-polarized,

(
0
1

)
), we need

a half-wave plate (δ = π/2, corresponding to a phase difference of 2δ = π). The plate must be oriented
at θ = 45◦ relative to the input polarization. Let’s verify: θ = 45◦, cos θ = sin θ = 1/

√
2. R(45◦) =

1√
2

(
1 1
−1 1

)
. R(−45◦) = 1√

2

(
1 −1
1 1

)
. For δ = π/2, B(d) =

(
e−iπ/2 0

0 eiπ/2

)
=

(
−i 0
0 i

)
. The

transformation matrix M = R(−45◦)B(d)R(45◦):

M =
1√
2

(
1 −1
1 1

)(
−i 0
0 i

)
1√
2

(
1 1
−1 1

)
=

1

2

(
1 −1
1 1

)(
−i −i
−i i

)
=

1

2

(
0 −2i

−2i 0

)
=

(
0 −i
−i 0

)
Applying to E⃗in =

(
1
0

)
:

E⃗out = M

(
1
0

)
=

(
0 −i
−i 0

)(
1
0

)
=

(
0
−i

)
This is y-polarized light (with a phase shift). It has been rotated by 90◦. The thickness d required for
δ = π/2 is found from δ = (ns − nf )

πd
λ :

π

2
= (ns − nf )

πd

λ
=⇒ d =

λ

2(ns − nf )

For calcite and λ = 600 nm:

d =
600× 10−9 m

2× (0.172)
≈ 1.744× 10−6 m = 1.74µm

Answer: A half-wave plate (δ = π/2) oriented at θ = 45◦ to the input polarization rotates it by 90◦.
For calcite at λ = 600 nm, the required thickness is d = λ/(2∆n) ≈ 1.74µm.

(b) Find a thickness and an orientation that converts linearly polarized light to circularly
polarized light, and evaluate the thickness for calcite.

Solution: To convert linear polarization to circular polarization, we need a quarter-wave plate (δ =
π/4, phase difference 2δ = π/2). The plate must be oriented at θ = 45◦ relative to the input linear

polarization. Input E⃗in =

(
1
0

)
. For δ = π/4, B(d) =

(
e−iπ/4 0

0 eiπ/4

)
. The transformation matrix

M = R(−45◦)B(d)R(45◦) with θ = 45◦:

M =
1√
2

(
1 −1
1 1

)(
e−iπ/4 0

0 eiπ/4

)
1√
2

(
1 1
−1 1

)

M =
1

2

(
1 −1
1 1

)(
e−iπ/4 e−iπ/4

−eiπ/4 eiπ/4

)
=

1

2

(
e−iπ/4 + eiπ/4 e−iπ/4 − eiπ/4

e−iπ/4 − eiπ/4 e−iπ/4 + eiπ/4

)
Using Euler’s formula (eix = cosx + i sinx): e−iπ/4 = 1−i√

2
, eiπ/4 = 1+i√

2
. e−iπ/4 + eiπ/4 = 2 cos(π/4) =

2/
√
2 =

√
2. e−iπ/4 − eiπ/4 = −2i sin(π/4) = −2i/

√
2 = −i

√
2.

M =
1

2

( √
2 −i

√
2

−i
√
2

√
2

)
=

1√
2

(
1 −i
−i 1

)
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Applying to E⃗in =

(
1
0

)
:

E⃗out = M

(
1
0

)
=

1√
2

(
1
−i

)
This represents right-circularly polarized light (depending on convention). The thickness d required for
δ = π/4 is:

π

4
= (ns − nf )

πd

λ
=⇒ d =

λ

4(ns − nf )

For calcite and λ = 600 nm:

d =
600× 10−9 m

4× (0.172)
≈ 0.872× 10−6 m = 0.87µm

Answer: A quarter-wave plate (δ = π/4) oriented at θ = 45◦ to the input polarization converts it to
circular polarization. For calcite at λ = 600 nm, the required thickness is d = λ/(4∆n) ≈ 0.87µm.

(c) Consider two linear polarizers oriented along the same direction, and a birefringent
material placed between them. What is the transmitted intensity as a function of the
orientation of the birefringent material relative to the axis of the polarizers?

Solution: Let the polarizers be oriented along the x-axis. The Jones matrix for such a polarizer

is L =

(
1 0
0 0

)
[cite: 180]. Input light (unpolarized) passes through the first polarizer, resulting in

E⃗1 =

(
E0

0

)
. This light then passes through the birefringent material oriented at angle θ. The Jones

matrix for the material is M(θ, δ) = R(−θ)B(d)R(θ). The light after the material is E⃗2 = M(θ, δ)E⃗1.

Finally, the light passes through the second polarizer (also along x-axis): E⃗out = LE⃗2 = LM(θ, δ)E⃗1.
We need the (1,1) element of the matrix M(θ, δ).

M(θ, δ) =

(
cos θ − sin θ
sin θ cos θ

)(
e−iδ 0
0 eiδ

)(
cos θ sin θ
− sin θ cos θ

)

M(θ, δ) =

(
cos θ − sin θ
sin θ cos θ

)(
e−iδ cos θ e−iδ sin θ
−eiδ sin θ eiδ cos θ

)
M11 = cos θ(e−iδ cos θ)− sin θ(−eiδ sin θ) = cos2 θe−iδ + sin2 θeiδ

M11 = cos2 θ(cos δ − i sin δ) + sin2 θ(cos δ + i sin δ)

M11 = (cos2 θ + sin2 θ) cos δ + i(− cos2 θ + sin2 θ) sin δ

M11 = cos δ − i cos(2θ) sin δ

The output electric field is:

E⃗out = LM(θ, δ)

(
E0

0

)
=

(
1 0
0 0

)(
M11 M12

M21 M22

)(
E0

0

)
=

(
1 0
0 0

)(
M11E0

M21E0

)
=

(
M11E0

0

)
The transmitted intensity Iout is proportional to |E⃗out|2 = |M11E0|2 = |M11|2|E0|2. Let the input
intensity after the first polarizer be I0 ∝ |E0|2.

Iout = I0|M11|2 = I0| cos δ − i cos(2θ) sin δ|2

Iout = I0[(cos δ)
2 + (− cos(2θ) sin δ)2]

Iout = I0[cos
2 δ + cos2(2θ) sin2 δ]

Using sin2 δ = 1− cos2 δ:
Iout = I0[cos

2 δ + cos2(2θ)(1− cos2 δ)]

Iout = I0[cos
2 δ + cos2(2θ)− cos2(2θ) cos2 δ]

Iout = I0[cos
2(2θ) + cos2 δ(1− cos2(2θ))]

Iout = I0[cos
2(2θ) + cos2 δ sin2(2θ)]
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Alternatively, using cos2 x = (1 + cos(2x))/2:

Iout = I0[cos
2 δ +

1 + cos(4θ)

2
sin2 δ]

Let’s re-derive using a simpler form: M11 = cos2 θe−iδ + sin2 θeiδ.

|M11|2 = (cos2 θe−iδ + sin2 θeiδ)(cos2 θeiδ + sin2 θe−iδ)

|M11|2 = cos4 θ + sin4 θ + cos2 θ sin2 θ(e−2iδ + e2iδ)

|M11|2 = cos4 θ + sin4 θ + cos2 θ sin2 θ(2 cos(2δ))

|M11|2 = (cos2 θ + sin2 θ)2 − 2 cos2 θ sin2 θ + 2 cos2 θ sin2 θ cos(2δ)

|M11|2 = 1− 2 cos2 θ sin2 θ(1− cos(2δ))

Using 2 sin2 δ = 1− cos(2δ) and sin(2θ) = 2 sin θ cos θ, so 2 cos2 θ sin2 θ = 1
2 (2 sin θ cos θ)

2 = 1
2 sin

2(2θ).

|M11|2 = 1− 1

2
sin2(2θ)(2 sin2 δ) = 1− sin2(2θ) sin2 δ

So,
Iout = I0(1− sin2(2θ) sin2 δ)

Checking consistency: 1 − sin2(2θ) sin2 δ = 1 − (1 − cos2(2θ)) sin2 δ = 1 − sin2 δ + cos2(2θ) sin2 δ =
cos2 δ + cos2(2θ) sin2 δ. This matches the previous form.

Answer: The transmitted intensity is Iout = I0(1 − sin2(2θ) sin2 δ), where I0 is the intensity after
the first polarizer, θ is the angle of the birefringent material’s axes relative to the polarizers, and δ =
(ns − nf )πd/λ is the phase retardation parameter.

Problem 14.4

What voltage must be applied across KDP to give a phase difference of π for 700 nm light?
Solution: The document provides the equation for the phase difference ∆ϕ = ϕx − ϕy induced by an

electric field Ez (voltage V across length l) in KDP (Eq. 13.30)[cite: 300]:

∆ϕ =
1

c
ωn3

0r63Ezl =
1

c
ωn3

0r63V

where ω = 2πc/λ is the angular frequency of light.

∆ϕ =
1

c

(
2πc

λ

)
n3
0r63V =

2π

λ
n3
0r63V

We are given: ∆ϕ = π λ = 700 nm = 700 × 10−9 m [cite: 332] n0 = 1.51 for KDP [cite: 298] r63 =
10.6× 10−12 m/V for KDP [cite: 298]

We need to solve for the voltage V :

V =
∆ϕλ

2πn3
0r63

V =
π × (700× 10−9 m)

2π × (1.51)3 × (10.6× 10−12 m/V)

V =
700× 10−9

2× (3.443)× (10.6× 10−12)
V

V =
700× 10−9

73.0
× 1012 V ≈ 9.59× 103 V

Answer: A voltage of approximately 9.6 kV must be applied across KDP.
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Problem 14.5

This problem concerns an Acousto-Optic Modulator (AOM) using LiNbO3. Given values: Material:
LiNbO3 [cite: 333] Light wavelength: λ = 700 nm = 7 × 10−7 m [cite: 333] Light beam diameter:
D = 1 cm = 0.01m [cite: 333] Acoustic power: Pacoustic = 1W [cite: 333] Acoustic frequency: νs =
100MHz = 1×108 Hz [cite: 333] Acoustic beam dimensions: 1mm×1mm[cite: 333]. Assume interaction
length l = 1mm = 0.001m. Area Aacoustic = (10−3 m)2 = 10−6 m2. LiNbO3 properties[cite: 309]: Index

of refraction: n = 2.25 Mass density: ρ = 4700 kg/m
3
Sound velocity: vs = 7.40 km/s = 7400m/s

Photoelastic constant: p = 0.15
(a) What is the Bragg angle in the material?
Solution: The Bragg diffraction condition is given by Eq. (13.34)[cite: 305]:

2λphonon sin θ =
λphoton

n

where θ is the Bragg angle inside the material, λphonon = vs/νs is the sound wavelength, and λphoton is
the light wavelength in vacuum.

λphonon =
7400m/s

1× 108 Hz
= 7.4× 10−5 m

sin θ =
λphoton

2nλphonon
=

7× 10−7 m

2× (2.25)× (7.4× 10−5 m)

sin θ =
7× 10−7

3.33× 10−4
≈ 2.10× 10−3

For small angles, sin θ ≈ θ in radians.
θ ≈ 2.10× 10−3 rad

Converting to degrees: θ ≈ (2.10× 10−3)× 180
π ≈ 0.12◦

Answer: The Bragg angle inside the material is θ ≈ 2.1× 10−3 radians or 0.12◦.
(b) What is the ratio of diffracted to incoming intensity?
Solution: The ratio is given by Eq. (13.35)[cite: 307]:

Idiffracted
Iincident

= sin2

(
πl

λphoton

√
MIacoustic

2

)

First, calculate the acoustic intensity Iacoustic:

Iacoustic =
Pacoustic

Aacoustic
=

1W

10−6 m2
= 1× 106 W/m

2

Next, calculate the figure of merit M using Eq. (13.36)[cite: 308]:

M =
n6p2

ρv3s
=

(2.25)6(0.15)2

(4700 kg/m
3
)(7400m/s)3

M =
(113.9)(0.0225)

(4700)(4.05× 1011)
=

2.563

1.90× 1015
≈ 1.35× 10−15 s3

kg

Now, calculate the argument of the sin2 function:

Arg =
πl

λphoton

√
MIacoustic

2

Arg =
π(0.001m)

7× 10−7 m

√
(1.35× 10−15)(1× 106)

2

Arg = (4.49× 103)
√
6.75× 10−10 = (4.49× 103)(2.60× 10−5)

Arg ≈ 0.117 rad
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Finally, the intensity ratio:

Idiffracted
Iincident

= sin2(0.117) ≈ (0.1167)2 ≈ 0.0136

Answer: The ratio of diffracted to incoming intensity is approximately 0.0136 or 1.36
(c) What sound frequency range is needed to resolve 1000 points?
Solution: The number of resolvable points (directions) N is given by Eq. (13.38)[cite: 314]:

N = ∆νsτ

where ∆νs is the sound frequency range (bandwidth) and τ is the time it takes sound to cross the light
beam diameter D.

τ =
D

vs
=

0.01m

7400m/s
≈ 1.35× 10−6 s = 1.35µs

We need N = 1000.

∆νs =
N

τ
=

1000

1.35× 10−6 s
≈ 7.4× 108 Hz = 740MHz

Answer: A sound frequency range (bandwidth) of approximately 740 MHz is needed to resolve 1000
points.
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